Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG
نویسندگان
چکیده
Although previous studies have established that successful memory encoding is associated with increased synchronization of theta-band and gamma-band oscillations, it is unclear if there is a functional relationship between oscillations in these frequency bands. Using scalp-recorded EEG in healthy human participants, we demonstrate that cross-frequency coupling between frontal theta phase and posterior gamma power is enhanced during the encoding of visual stimuli which participants later on remember versus items which participants subsequently forget ("subsequent memory effect," SME). Conventional wavelet analyses and source localizations revealed SMEs in spectral power of theta-, alpha-, and gamma-band. Successful compared to unsuccessful encoding was reflected in increased theta-band activity in right frontal cortex as well as increased gamma-band activity in parietal-occipital regions. Moreover, decreased alpha-band activity in prefrontal and occipital cortex was also related to successful encoding. Overall, these findings support the idea that during the formation of new memories frontal cortex regions interact with cortical representations in posterior areas.
منابع مشابه
Oscillatory correlates of the primacy effect in episodic memory.
Both intracranial and scalp EEG studies have demonstrated that oscillatory activity, especially in the gamma band (28 to 100 Hz), can differentiate successful and unsuccessful episodic encoding [Sederberg, P.B., Kahana, M.J., Howard, M.W., Donner, E.J., Madsen, J.R., 2003. Theta and gamma oscillations during encoding predict subsequent recall. Journal of Neuroscience, 23(34), 10809-10814; Fell,...
متن کاملSubsequent memory effect in intracranial and scalp EEG
Successful memory encoding is marked by increases in 30-100Hz gamma-band activity in a broad network of brain regions. Activity in the 3-8Hz theta band has also been shown to modulate memory encoding, but this effect has been found to vary in direction across studies. Because of the diversity in memory tasks, and in recording and data-analytic methods, our knowledge of the theta frequency modul...
متن کاملFrontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval
Neural oscillations in the theta band (4-8 Hz) are prominent in the human electroencephalogram (EEG), and many recent electrophysiological studies in animals and humans have implicated scalp-recorded frontal midline theta (FMT) in working memory and episodic memory encoding and retrieval processes. However, the functional significance of theta oscillations in human memory processes remains larg...
متن کاملPre-stimulus thalamic theta power predicts human memory formation
Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei h...
متن کاملSelective Coupling between Theta Phase and Neocortical Fast Gamma Oscillations during REM-Sleep in Mice
BACKGROUND The mammalian brain expresses a wide range of state-dependent network oscillations which vary in frequency and spatial extension. Such rhythms can entrain multiple neurons into coherent patterns of activity, consistent with a role in behaviour, cognition and memory formation. Recent evidence suggests that locally generated fast network oscillations can be systematically aligned to lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 66 شماره
صفحات -
تاریخ انتشار 2013